Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 10  |  Issue : 4  |  Page : 454-458

Accuracy of cone-beam computed tomography in defining spatial relationships between third molar roots and inferior alveolar nerve


1 Department of Odontostomatological and Maxillo Facial Sciences, “Sapienza” University of Rome, Via Caserta 6, 00161 Rome, Italy
2 Department of Sensory Organs, “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy

Correspondence Address:
Marcello Santoro
Department of Odontostomatological and Maxillo Facial Sciences, “Sapienza” University of Rome, Via Caserta 6, 00161 Rome
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1305-7456.195168

Rights and Permissions

Objective: Cone-beam computed tomography (CBCT) has been proposed in surgical planning of lower third molar extraction. The aim of the present study was to assess the reliability of CBCT in defining third molar root morphology and its spatial relationships with the inferior alveolar nerve (IAN). Materials and Methods: Intraoperative and radiographic variables of 74 lower third molars were retrospectively analyzed. Intraoperative variables included IAN exposure, number of roots, root morphology of extracted third molars, and presence/absence of IAN impression on the root surface. Radiographic variables included presence/absence of the cortex separating IAN from the third molar roots on CBCT examination, number of roots and root morphology on both orthopantomography (OPG) and CBCT. The statistical association between variables was evaluated using the Fisher's exact test. Results: In all cases of intraoperative IAN exposure, the cortex appeared discontinuous on CBCT images. All cases, in which the cortical bone was continuous on CBCT images, showed no association with nerve exposure. In all cases in which nerve impression was identified on the root surface, the IAN cortex showed interruptions on CBCT images. No nerve impression was identified in any of the cases, in which the cortex appeared continuous on CBCT images. CBCT also highlighted accessory roots and apical anomalies/curvatures, not visible on the OPG. Conclusions: CBCT seems to provide reliable and accurate information about the third molar root morphology and its relationship with the IAN.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed819    
    Printed5    
    Emailed0    
    PDF Downloaded245    
    Comments [Add]    

Recommend this journal